2,750 research outputs found

    Echo Delay and Overlap with Emitted Orientation Sounds and Doppler-shift Compensation in the Bat, Rhinolophus ferrumequinum

    Get PDF
    The compensation of Doppler-shifts by the bat, Rhinolophusferrumequinum, functions only when certain temporal relations between the echo and the emitted orientation sound are given. Three echo configurations were used: a) Original orientation sounds were electronically Doppler-shifted and played back either cut at the beginning (variable delay) or at the end (variable duration) of the echo. b) Artificial constant frequency echoes with variable delay or duration were clamped to the frequency of the emitted orientation sound at different Doppler-shifts. c) The echoes were only partially Doppler-shifted and the Doppler-shifted component began after variable delays or had variable durations. With increasing delay or decreasing duration of the Doppler-shifted echo the compensation amplitude for a sinusoidally modulated + 3 kHz Dopplershift (modulation rate 0.08 Hz) decreases for all stimulus configurations (Figs. 1, 2, 3). The range of the Doppler-shift compensation system is therefore limited by the delay due to acoustic travel time to about 4 m distance between bat and target. In this range the overlap duration of the echo with the emitted orientation sound is always sufficiently long, when compared with data on the orientation pulse length during target approach from Schnitzler (1968) (Fig. 5)

    Multiwavelength interferometric observations and modeling of circumstellar disks

    Full text link
    We investigate the structure of the innermost region of three circumstellar disks around pre-main sequence stars HD 142666, AS 205 N, and AS 205 S. We determine the inner radii of the dust disks and, in particular, search for transition objects where dust has been depleted and inner disk gaps have formed at radii of a few tenths of AU up to several AU. We performed interferometric observations with IOTA, AMBER, and MIDI in the infrared wavelength ranges 1.6-2.5um and 8-13um with projected baseline lengths between 25m and 102m. The data analysis was based on radiative transfer simulations in 3D models of young stellar objects (YSOs) to reproduce the spectral energy distribution and the interferometric visibilities simultaneously. Accretion effects and disk gaps could be considered in the modeling approach. Results from previous studies restricted the parameter space. The objects of this study were spatially resolved in the infrared wavelength range using the interferometers. Based on these observations, a disk gap could be found for the source HD 142666 that classifies it as transition object. There is a disk hole up to a radius of R_in=0.30AU and a (dust-free) ring between 0.35AU and 0.80AU in the disk of HD 142666. The classification of AS 205 as a system of classical T Tauri stars could be confirmed using the canonical model approach, i. e., there are no hints of disk gaps in our observations.Comment: accepted by Astronomy & Astrophysic

    Environmental changes and radioactive traces

    Get PDF

    Cosmological constraints on a classical limit of quantum gravity

    Full text link
    We investigate the cosmology of a recently proposed deformation of Einstein gravity, emerging from quantum gravity heuristics. The theory is constructed to have de Sitter space as a vacuum solution, and thus to be relevant to the accelerating universe. However, this solution turns out to be unstable, and the true phase space of cosmological solutions is significantly more complex, displaying two late-time power-law attractors -- one accelerating and the other dramatically decelerating. It is also shown that non-accelerating cosmologies sit on a separatrix between the two basins of attraction of these attractors. Hence it is impossible to pass from a decelerating cosmology to an accelerating one, as required in standard cosmology for consistency with nucleosynthesis and structure formation and compatibility with the data inferred from supernovae Ia. We point out that alternative models of the early universe, such as the one investigated here might provide possible ways to circumvent these requirements.Comment: 14 pages, 2 figures, REVTeX

    Application of the 137 Cs technique to quantify soil redistribution rates in paleohumults from Central-South Chile

    Get PDF
    The objective of the present study was to evaluate the applicability of the 137Cs technique in obtaining spatial distributed information on mean soil redistribution rates in Central-South Chile. For this purpose four fields of Palehumult soil and contrasting land use and management were selected in the Coastal Mountain Range of the 9th Region: Crop fields under subsistence and commercial management and non-permanent prairies under subsistence and commercial management. The spatial distribution of the soil redistribution rates obtained by the 137Cs method was similar to the one obtained by pedological observations. Also, annual sediment fluxes measured at experimental plots were similar to the erosion rates determined by the 137Cs method at adjacent points. The 137Cs technique is seen as an efficient method to obtain long-term soil redistribution rates under the climatic conditions and the soil type selected in Chile. In the future, it is necessary to study the applicability of the method under other climatic conditions and soil types occurring in Chile in which erosion is not so evident, and to adjust the method to optimise costs and benefits
    • 

    corecore